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SUMMARY 

A new numerical model has been developed to evaluate the removal efficiency of primary sedimentation 
clarifiers operating at neutral density condition. The velocity and concentration fields as well as the 
development in time and space of the settled particle bed thickness are simulated. The main difficulties in 
simulation of velocity and concentration fields are related to (1) numerical instabilities produced by the 
prevalence of convective terms in the unknown variable high-gradient regions and (2)  turbulence effects on 
the suspension of solid particles from the settled bed. The need to overcome the numerical instabilities 
without the upwind difference approximation, which introduces high numerical viscosity, suggests the use of 
non-uniform grids of calculation. 

The velocity field i s  obtained by solving the motion equations in the vorticity and streamfunction 
formulation by means of a new numerical method based upon a dynamically self-adjusting calculation grid. 
These grids allow for a finer mesh following the evolution of the unknown quantities. A k--E model is used to 
simulate turbulence phenomena. 

The sedimentation field is found by solving the diffusion and transport equation of the solid particle 
Concentration. Boundary condifions on the bottom line are imposed relating the amount of turbulence flux 
and sedimentation flux to the actual concentration and the reference concentration. Such an approach 
makes it possible to represent the solid particle suspension from the bottom, taking into account its 
dependence on (1) the characteristics and the evolution in time of the settled bed, (2) the velocity component 
parallel to the bottom line and (3) the turbulence structure. 
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INTRODUCTION 

Analysis of the settling performance of primary clarifiers requires detailed knowledge of the 
velocity field in the tanks. Since the flow is turbulent and recirculating flow patterns are present in 
the basin, the velocity field is difficult to simulate. Furthermore, the sedimentation phenomenon is 
complex, since there is an interacting two-phase turbulent flow in which effects may induce 
density differences within the tank and therefore cause modifications of the flow pattern. 

The possibility of simulating the liquid phase uncoupled from its solid phase counterpart is 
presently being debated. In fact, Hudgins and Silvestonl have disputed the Imam and 
McCorquodale hypothesis2 of uncoupling the phases, because in this case the stratified flows 
produced by concentration gradients are neglected. McCorquodale’s answer3 is convincing with 
regard to the reduced presence of flow field modifications produced by the solid phase in primary 
sedimentation, and emphasizes the importance of small temperature differences between inflow 
and outflow in producing density currents as well as in modifying the turbulent structures. 
Schamber and Larock4 state that if the particle suspension is sufficiently dilute then the 
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simulation of the hydrodynamics may be done separately from the simulation of particle 
transport, while Di Giacinto et aL5 show that the Froude number together with the ratio between 
the volume fraction of the two phases and the ratio between the microscopic density of the two 
phases are the parameters which indicate the conditions of uncoupling. 

Thus in the absence of temperature gradients and in the case of dilute suspensions the velocity 
field can be analysed alone: consequently the removal efficiency of the sedimentation basin 
depends on the turbulent mixing and on the vertical and horizontal recirculation flow patterns. 
The cost of three-dimensional computation is currently prohibitive in terms of computer time and 
storage, thus we have to restrict the analysis of the flow to a vertical plane taken on the tank 
centreline from inlet to outlet. Schamber and Larock6 consider this approach reasonable in the 
absence of wind stresses. 

Good simulations of turbulent structures require the use of at least two equation models.? 
Simpler turbulent models do not provide reliable results. However, the suggestion of Imam and 
McCorquodale’ is of interest, which simulates the flow field in primary sedimentation tanks by 
solving, using finite differences, the Navier-Stokes equations in terms of vorticity and streamfunc- 
tions; the use of alternate direction implicit techniques is suitable and the instability induced by 
the dominance of the advective terms is avoided by means of the upwind formulation, while the 
eddy viscosity coefficient is assumed to be constant. Abdel-Gawad and McCorquodale* use an 
original method based on a combination of strip integral and finite element methods to simulate 
the flow field in rectangular sedimentation tanks; a modified mixing length approach is used to 
introduce the effect of turbulence in the solution. 

The use of more sophisticated turbulent models provides more satisfactory solutions, but such 
models present problems of stability and convergence of the algorithm. These instabilities, as well 
as those arising where the convective terms are prevalent can be overcome by a selective 
refinement of the mesh in high-gradient regions. Schamber and Larock6 solve the problem in an 
interesting way: the flow field is obtained by a finite element solution of five partial differential 
equations in terms of mean vertical and horizontal velocity, mean pressure, kinetic energy of 
turbulence and viscous dissipation. The finite element method allows for the use of a non-uniform 
computation mesh in the space. 

Generally the simulation of the sedimentation field is obtained by numerically solving the 
diffusion and transport equation of the suspended solid concentration. Such an equation needs 
suitable boundary conditions. The definition of boundary conditions at the bottom of the tank, 
where the bed of settled particles is located, is particularly complex and essentially related to 
( 1 )  the characteristics of the settled particles, (2) the shear stress which produces the movement of 
the bed particles and (3) the turbulence structure which causes the upward movement of the 
particles. 

Schamber and Larock4 set the boundary condition at the bottom by assuming that the upward 
flux due to turbulence is equal to a fraction of the downward flux due to sedimentation. The time 
changes and the variations in turbulence and in velocity along the bottom line are not taken into 
account; the same treatment is given to the changes in sedimentation velocity, which is a function 
of the concentration. It is clear that the previous approach makes it possible to define the removal 
efficiency curve as a function of the sedimentation velocity, having defined a priori the suspension 
coefficient and taking it as being constant in time and space. 

The possibility of numerically predicting concentration fields and removal efficiencies is then 
excessively dependent on experimental measurements, which are necessary to define the bottom 
suspension coefficient for each case. 

The development of models that give valid design indications and that are not subordinated to 
information deriving from experimental measurement, requires the definition of methodologies 
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able to determine, in an inexpensive way in terms of computing time, the structure of the bottom 
suspension as a function of all the parameters involved in the phenomenon. 

This paper presents a numerical model for the simulation of velocity and concentration fields as 
well as the time evolution and the thickness trends of the settled bed along the bottom line. The 
velocity field is obtained by solving the Reynolds equation in the vorticity and streamfunction 
formulation, using a new numerical method based on a self-adaptive mesh following the 
evolution of the problem’s unknown quantities. A k--E model is used to simulate the turbulent 
phenomena. The sedimentation field is determined by solving the diffusion and transport 
equation of the concentration. The boundary conditions at the bottom line of the tank are set by 
relating the amount of turbulence flux and sedimentation flux to the actual concentration and the 
reference concentration, which are variable in time and space, being functions of the character- 
istics of the velocity component parallel to the bottom. 

MATHEMATICAL MODEL 

Velocity j e l d  

rectangular sedimentation basin are 
The equations describing a two-dimensional, unsteady, turbulent, non-stratified flow in a 

au au 
ax ay  -+ -=o ,  

in which u and v are the horizontal and vertical components of mean velocities, u‘ and u’ are the 
instantaneous velocity fluctuations around their respective means, p is the fluid density, v is the 
kinematic viscosity and p is the pressure. 

Using the relationships 

in which I) is the streamfunction and w is the vorticity, equations (1H3) can be replaced in the 
following way: 

am aw aw 1 a -  a -  at + u- + u -  = -vzw - -(u’w’) - - ($w‘ ) ,  
ax ay Re ax aY 

v 2 *  =w, (6) 
in which Re = U o  Lo/v, where U ,  and Lo are characteristic velocity and length scales. 

With the assumption that the vorticity w is a ‘transferable quantity’ (Taylor’s 
vorticity-transport theory), the correlations for the turbulence fluctuation of velocity and 
vorticity can be related to the gradient of the average vorticity by 
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The eddy viscosity coefficient vT assumes the same value of the proportionality coefficient 
between correlations for turbulence fluctuation of velocity and the mean velocity derivative. This 
assumption is strictly demonstrable only for uniform bidimensional flow.’ 

The eddy viscosity coefficient is related to the turbulent kinetic energy k and its rate of 
dissipation 8 by 

VT = c,, kZ / E ,  (8) 

in which c,, is a constant equal to 0.09.7 
The variables k and E are computed from the transport partial differential equations coupled 

with the streamfunction and vorticity equations to obtain the simulation of the turbulent flow 
field. 

Assuming that P ,  the turbulent kinetic energy production, is given by 

the k-s equations have the form 

in which the constants c E , ,  cE2, ok and oE have the values 144, 1.92, 1.0 and 1.3 respectively. 
Since the k--E model is adopted to simulate the structures of turbulence, one does not require a 

priori knowledge of the distribution of vT, but the complexity of computation is increased. On the 
other hand, use of turbulent models in which no additional differential equations are required for 
turbulence closure does not provide reliable results. In fact, in these cases, it is difficult to obtain a 
turbulent flow field in which the main eddy characteristics are in agreement with experimental 
measurements; in particular, it is difficult to compute a correct value of both the reattachment 
point and the centre of the main eddy. 

Equation (6H11) represent a closed system of equations relating vorticity, streamfunction, 
kinetic energy of turbulence and its dissipation rate. Boundary conditions are required to yield a 
unique solution. 

Figure 1 shows the solution domain for a rectangular clarifier. 
A parabolic profile of the horizontal component of velocity is imposed along the inlet line A-B; 

the streamfunction $o along this line has a cubic profile and the vorticity is given by 

The values of k and E are also imposed along A-B in agreement with Rodi’s suggestion.’ The 
lines B-C, C-D, D-E, represent rigid walls where the components of the velocity and streamfunc- 
tions normal to the wall are assumed equal to zero and the vorticity is given by 

az* az* 
ax2 8Y2 

w = - on the bottom. w = ~ on vertical walls, 

With regard to the boundary conditions on k and E along these planes, it should be noted that 
the turbulent model is valid only in fully turbulent flow; Launder and Spalding’s suggestions’ 
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Figure 1. Solution domain for a rectangular clarifier 

and the applications to sedimentation basins carried out by Schamber and Larock6 indicate a 
way to solve this problem: k and E are not assigned at the wall but at a distance y* from the wall, 
where there is a fully turbulent regime. In this region, convection and diffusion of are 
negligible; thus in the absence of buoyancy effects, the turbulent kinetic energy production is 
equal to the dissipation rate. Boundary conditions on k and E become 

in which U ,  is the friction velocity given by 

where U ,  is the velocity component parallel to the wall, E is a roughness parameter (which was 
given a value of 9)7 and x is the von Karman constant. 

The line A-F represents the free surface where the vertical component of velocity and the 
vorticity are set equal to zero, the streamfunction is constant and equal to Q (flow rate) and the 
conditions a o / d y  = 0, ak/ay = 0, at lay = 0 are assumed. The line E-F represents the outflow. This 
line is shorter than a computational grid step. The boundary conditions on o and It/ are not 
difficult to impose (in agreement with Imam and McCorquodale’s suggestions’). With regard to 
the boundary conditions on k--E at the outflow, since experimental data are not available and to 
avoid excessive thickening of the mesh in this region, the boundary is assumed to be the line G-H; 
as suggested by Schamber and Larock,6 the normal derivatives of k and E along it are set equal to 
zero. 

Concentration field 

and transport: 
The sedimentation field is determined by solving the equation of the concentration diffusion 

ac a [ vT ( a c ) ]  a”y[ :( 3 9  

ac ac - + u - + ( u - v s ) - = -  - - +-  - - 
at ax a y  ax oT ax 

where c is the concentration, us is the sedimentation velocity and oT is Schmidt’s number. 

free surface and at vertical walls the net flux of particles is set equal to zero, namely 
At the inlet, boundary conditions are expressed by assigned values of the concentration. At the 

vT ac 
u,c + - -=0 at the free surface, 

OT aY 
ac 
ax -=0 at vertical walls. 
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At the inlet, namely along the line G-H of Figure 1, advective transport is more important than 
diffusion transport; thus the derivative of the concentration respect to the normal to line G-H is 
set equal to zero. 

At the bottom, boundary conditions are present (from the definition of the reference concentra- 
tion as suggested by Armanini and Di Silvio”). 

Such a reference concentration c,, is the concentration at a distance a from the bed of 
sedimented particles in equilibrium conditions, namely in the absence of sedimentation or 
suspension. The net particle flux, i.e. normal to the line located at a distance a from the bed, is 
given by the product of the sedimentation velocity and the difference between the actual 
concentration and the reference concentration. Thus the boundary conditions for the bottom 
become 

where ck is the suspension coefficient given by 

ck = C,r/c. 120) 
Such a coefficient is variable along the bottom line and in time with respect to the actual and the 
reference concentration. 

The reference concentration is usually difficult to estimate. In this analysis the hypothesis 
formulated by van Rijn12 is assumed: 

d Ti5 
a 0:”” ’ 

c,, = 0.015 - ~ 

in which 

uf - u:r T =--- 
2 ’  

Ucr 

where d is the particle diameter, s is the specific density, v is the cinematic viscosity coefficient and 
uc, is the critical bed-shear velocity. 

The critical bed-shear velocity is given by 

u,, = 0 2 5  0,. (23) 
The change in time of the bed thickness z is 

aZ 
- = u,(c-c,,). 
at 

CALCULATION PROCEDURE AND SELF-ADAPTIVE MESH GENERATION 

The calculation method used to solve the system of equations is based on the finite difference 
technique. The particular geometry of the sedimentation tank, which is marked by greater length 
than depth, suggests the use of a variable and self-adaptive grid in order to obtain greater 
computational stability and more accurate results. A self-adaptive grid also makes it possible to 
describe the flow field better when higher gradients of the unknown functions arise; this situation 
is present especially in the inlet and outlet zones. 

Furthermore, in these regions computational instabilities or wiggles at the centre of the 
convective terms can arise during the finite difference approximation. Generally, these in- 
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stabilities are overcome by an upwind difference scheme, which, however, has the disadvantage of 
introducing additional numerical diffusion. Numerical  experiment^'^ have shown that a finer 
mesh in high-gradient regions reduces instabilities in a centred difference scheme and reduces 
numerical diffusion produced by upwind schemes. On the other hand, the possibility of thick- 
ening the mesh where convective terms are higher is limited by the need to have a time integration 
step sufficiently large to avoid heavy computational costs. The most common finite difference 
methods non-uniform grids are based on a co-ordinate transformation from the physical domain 
to the calculation domain: the differential equations to be solved are first rewritten in the 
transformed plane and then approximated by a finite difference scheme. These methods have the 
following disadvantages. 

(1) The problem of automation of grid generation to follow the evolution of the unknown 
quantities is solved by obtaining the co-ordinate transformation through numerical sol- 
ution of some elliptic partial differential equations. 

(2) Thickening of the mesh in one region is accompanied by a depletion in adjacent regions, so 
it is not possible to modify a small part of the grid during the calculation without moving a 
major portion of all points. 

The approach followed in this paper to obtain the self-adapting mesh without co-ordiante 
transformation is based on the observation that the finite difference approximation of the 
Laplacian operator written on five points of a symmetrical cross is very accurate and simple, 
whereas, if the symmetry is broken, much accuracy is lost. Consequently a local thickening can be 
obtained, without any change in the remaining computational domain, by introducing a new 
point among four existing points: thus a new symmetrical cross is generated which is inclined at 
45" with respect to the pre-existing crosses and has shorter branches. In this way a scheme of 
creation and deletion of points is adopted which allows for (dynamically self-adjusting) selective 
mesh refinement in high-gradient regions, which is simpler than the finite element method 
refinement and does not have the disadvantages produced by finite difference methods based on 
co-ordinate transformation. For further explanation, compare Figure 2(a) with Figure 2(b). In 
Figure 2(a), point 5 is the point at the centre of the symmetric cross having the points 8 ,2 ,6 ,4  as 
its extremes. In Figure 2(b), five points and relative symmetrical crosses have been introduced: 
point 10, which is at the centre of the cross with points 5, 1, 2, 4 as its extremes; point 11 and 
the cross with 6,2, 3, 5 as extreme points; point 12 and the cross with 8,4, 5, 7 as extreme points; 
point 13 and the cross with 3, 5, 6, 8 as extreme points; point 14 with 8, 5, 13, 12 as extreme 
points. Consequently, point 5 is the centre of a new cross which is inclined and smaller than 
the pre-existing cross. Of course the adaptive mesh process can also remove the extra mesh 
points when they are no longer needed. 

The calculation procedure to integrate equations (9, (6), (lo), (11) and (16) consists of a time 
iteration which starts from an initial condition and reaches the steady solution. 

Assume that: 

N' number of points located within the boundary lines at iteration t 
N ;  number of points on boundary lines at iteration f. 

We define the following vectors: 

or 
y' 
H' 

whose dimension is N'; o: represents the value of the vorticity at point i at iteration t 
whose dimension is N'; tj: represents the streamfunction at point i at iteration t 
whose dimension is N'; Hi represents the branch length of the symmetrical cross with the 
point i as its central point 
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7 8 9 

a 
I 2 3 

b 
I 2 3 

Figure 2. (a) Calculation mesh before adaptive process. (b) Calculation mesh with new points after adaptive process 

I' identity vector 
a*' 

v*[ 

whose dimension is Nfg; COT' represents the vorticity at point i on the boundary lines at 
iteration t 
whose dimension is Nfg; $7' represents the streamfunction at point i on the boundary lines 
at iteration t-on the boundary lines representing the horizontal or vertical rigid wall $:r 
is equal to zero; on the boundary line representing the free surface $ T t  is equal to the flow 
rate Q*; on the boundary line representing the inflow I), has an assigned value 
whose dimension is Nfg; mi' is different from zero only if point i is located on the line 
representing the inflow 
whose dimension is N'; V: is the value of the eddy viscosity at point i. 

w" 

V' 

The following topological matrices are defined: 

Q 

R 

S 

E 

whose dimensions are N' x N'; Qij is different from zero and equal to one only if point-j 
belongs to the cross having point i as centre 
whose dimensions are N' x N'; R i j  is different from zero and assumes the value & 1 only if 
point j is the upper or the lower point of the cross having point i as centre 
whose dimensions are N' x N'; Sij is different from zero and assumes the value ? 1 only if 
point j is the right or left point of the cross having point i as centre 
whose dimensions are AJ; x N'; E,, is different from zero and is equal to one only if point j 
is not located on the boundary lines but belongs to the cross whose centre is the point i 
located on the boundary line 
whose dimensions are Nfg x Nfg; B,, is different from zero and equals one only if point j is 
located on the boundary lines, with the exception of the lines representing the inflow and 
the free surface 
whose dimensions are N" x N'; C i j  is different from zero and equal to one only if i = j 
whose dimensions are N" x (N" - N'); Dij is different from zero and equal to only if 

B 

C 
D 

i-N'=j 
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Ui i matrix whose dimensions are N' x N';  Ui,r is different from zero and equal to one only if 

Once specified that the superscript symbol T defines the operation of vector transposition and 
that At is the time step integration, the calculation iteration to integrate the motion equations is 
as follows. 

(1) Computation of vorticity at the points located within the boundary lines at  iteration t +  I :  

i = j = k .  

)-' [ (ifl(Ry'-SV') ( U i S ~ ' ) T  

1 (Sy'fRV')  ( U ~ R W ' ) ~  4[Qo'-4(Ui~0')] (UiV')T 
N' 

(2) Computation of streamfunction at iteration t + 1: 

y'+' = y'+At[( fj [(UiH) (UiH)')I (Qy'-4yZ) - A t d .  
i =  1 1 (26) 

(3) Computation of the vorticity at the points located on the boundary lines at iteration t + 1: 

- 1  

w*'+l = 2(: (UiH) (UiH).> [ ( B E ~ ' + ' - ~ * ) ] + ( I - B ) E u I ' + ' + ~ ' .  
i = l  

(4) Computation of the turbulent kinetic energy and the viscous dissipation at iteration t + 1 at 
integration domain internal points; this calculation has been made by finite difference 
approximation of equations (10) and (1 1) in the same way as defined in step (I). 

(5) Introduction of new symmetrical crosses and new points in the calculation grid. FT is a 
scalar quantity that regulates the thickening of the mesh; it introduces a new point where 
the sum of the derivatives of the vorticity is greater than F,.  The number of points at 
iteration t+  1 is 

N'+'=N'+I' C Ui[Rw+Sw-F,) - I R U + S ~ - F T I ] ~  [(Rw+Sw-F,) 

(28) 

and v:fA' are 
the vorticity and streamfunction vectors that contain the values of those quantities at the 
new points: 

( i =  N' 1 1-l 

- IRw+Sw-FTI] .  

(6) Modification of the vectors and matrices H, R, S, Q, E, B, C and D. 
(7) Computation of the vorticity and the streamfunction at the new points; 
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(8) Computation of the kinetic energy turbulence and the viscous dissipation at  the newly 
introduced points at iteration t+ 1. 

APPLICATION 

The bidimensional model presented has been used to obtain the velocity and concentration fields 
in the rectangular sedimentation tank shown in Figure 1. 

The tank is 2.00m high an 20m long. The flow rate is 004mZs- ' ;  the values of the 
characteristic length Lo and the characteristic velocity U ,  are assumed to be equal to 1.5 m and 
0.02 m s- respectively. 

Figure 3 shows the initial computational mesh: the mesh is liner in proximity to the walls and 
to the outlet an inlet. This thickening of the mesh is needed at the start of the calculation since 
great accuracy is required in these regions of the domain. In fact, the values for the vorticity in 
proximity to the wall are approximated in terms of finite difference as a function of the 
streamfunction; this approximation turns out to be more accurate and more stabilized the finer 
the mesh is in proximity to the wall. 

Figure 4 shows the computational mesh at  an intermediate time of calculation, while in 
Figure 5 the finai computational mesh is shown, related to the situation in which the 
stationary configuration is reached. 

From the three previous figures, the self-adaptive process of the mesh as a function of the 
vorticity gradients and their evolution in time can be observed. 

Figure 6 shows the velocity field obtained by calculation: the element which characterizes the 
whole velocity field is found to be the main eddy immediately downstream from the inlet. The 
reattachment point is rather far from the inlet and is located at approximately 6.5 tank depths 

Figure 3. Initial computational mesh 

Figure 4. Computational mesh at an intermediate time of calculation 

Figure 5. Final computational mesh 
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Figure 6. Velocity field obtained by calculation 

Figure 7(a). Velocity field obtained by measurement with LDA 

/ 

NUMERICAL R E S U L T S  
L D A MEASURE MEN TS 

_ _ _ _  
- 

Figure 7(b). Comparison between numerical results and experimental data (velocity profiles) 

z 3 
0.20 K / V o  0.10f L o /  v. 

Figure 8. Turbulent kinetic energy andd viscous dissipation 

from the inlet. The considerable size of this eddy confirms the importance that the recirculations 
in the vertical plane have in the analysis of the performance of sedimentation tanks. Experimental 
data obtained by laser Doppler anemometry in physical tank models with geometry similar to the 
one shown in Figure 1 are presented in Figure 7(a). Figure 7(b) shows a comparsion between 
horizontal velocity components obtained by experimental measurements and by the numerical 
model. By means of this comparison it is possible to point out that the numerical data appear to 
be in a good agreement with the experimental data. In fact, in the numerical computation the 
distance between the ‘reattachment point’ of the main eddy and the inlet is close to the measured 
distance. Some differences between velocity contours are recognizable near the inlet: the points 
where the horizontal velocity is equal to zero are in different zones; in the numerical results these 
points are closer to the bottom of the tank. The aforesaid disagreement is related to the finite 
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_ _ -  B E D  THICKNESS 1101- 

Figure 9. Concentration field and bed thickness; particle diameter 75 pm 

._ BED THICKNESS I 10-m 

Figure 10. Concentration field and bed thickness; particle diameter 85 pm 

difference approximation introduced in the vorticity boundary condition for point B (Figure 1); 
further thickening of the mesh in the proximity of the inlet can allow an improvement of the 
numerical outcome. 

Figure 8 gives the profiles of turbulent kinetic energy and viscous dissipation. We can see the 
large values of the turbulent kinetic energy in proximity to the corner at  the inlet as well as the 
effects produced by energy transport in the recirculating zone; these results are in good qualitative 
agreement with the results obtained by Smith.I4 

The concentration field and the settled bed increase have been simulated for 1 h of real time for 
different particle diameter values and different sedimentation velocity values. 

Figure 9 shows the concentration field and the bed thickness (with a deformed scale) obtained 
with a particle diameter of 75 pm and a sedimentation velocity of 0.031 cm s-  '; in Figure 10 the 
particle diameter is 85 pm and the sedimentation velocity is 0.039 cm s-'; in Figure 11 the 
diameter is 115 pm and the velocity is 0.072 cms-'. The particle density is 1.1 gcmW3. A zero 
value of the concentration is taken as the initial condition. 

From Figure 9 it is possible to deduce the effect that the main eddy has on the concentration 
field; in particular, the maximum concentration curve is deformed by the change in the advective 
transport sign produced by the same eddy. 

It is also important to note the effect that the upward velocity component close to the wall at 
the outlet produces on the isoconcentration curves. 

The removal efficiency E ,  is defined by 

x 100, E co - C" 
f -  

c0 

where c,, is the inlet concentration and c, is the outlet concentration. In the case of Figure 9 this 
efficiency is equal to 37% since the sedimentation velocity is low. In the case of Figures 10 and 11 
the removal efficiency is increased as the sedimentation velocity is raised. 

Figure 12 shows the removal efficiency curve as a function of the sedimentation velocity. 
The bed thickness along the bottom line shown in Figure9 points out that the suspension 

phenomenon is larger where the values of the veloicty component parallel to the bed are bigger. 
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BED THICKNESS 1 10-1 

Figure 1 1 .  Concentration field and bed thickness; particle diameter 115 pm 

0 ,  3 ,  I I 1 z r c 8 ,  

0 N * * Q 0 - v ,  8 g. x 8 0- ( c m , s )  

Figure 12. Removal efficiency curve 

Figures 9 and 10 give different shapes for the bed thickness; in fact, in this case the suspension 
phenomenon is less important because the sedimentation velocity is higher. 

CONCLUSIONS 

The numerical model proposed allows complete simulation of the velocity and concentration 
fields in primary rectangular sedimentation tanks operating at neutral density condition. 

This method, based upon a self-adaptive calculation grid, allows for good simulations in high- 
gradient regions where calculation instabilities arise. The use of the k--E model in the simulation of 
turbulence in sedimentation tanks is imposed by the difficulty in specifying a priori the distribu- 
tion of the eddy viscosity coefficient. 

The velocity field obtained by the present calculations shows the existence of a non-uniform 
recirculating flow pattern within the basin, in good agreement with experimental data obtained 
with laser Doppler anemometry. 

The methodologies used to simulate the suspension particles from the settled bed permit 
calculation of the removal efficiency of settling tanks without a priori specification of the 
suspension coefficient. 
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APPENDIX: NOTATION 

topological matrix of dimensions Nf, x NL 
topological matrix of dimensions N'" x N' 
concentration 
reference concentration 
inlet concentration 
suspension coefficient 
outlet concentration 
topological matrix of dimensions N"' x (N" - N')  
particle diameter 
topological matrix of dimensions Nf, x N' 
removal efficiency 
scalar quantity 
vector of dimension N' 
vector of dimension Nf, 
identity vector or matrix 
number of points within the boundary lines at iteration t 
number of points on boundary lines at  iteration t 
turbulent kinetic energy production 
topological matrix of dimensions N' x N' 
topological matrix of dimensions N' x N' 
topological matrix of dimensions N' x N' 
vector transposition exponent 
vector of dimension N'; eddy viscosity 
kinetic energy of turbulence 
velocity component along x 
friction velocity 
velocity component parallel to the wall 
critical velocity 
topological matrix 
velocity component parallel to the wall 
friction velocity 
velocity component along y 
sedimentation velocity 
Stokes' velocity 
vector of dimension N' 
bed thickness, changing in time 
kinematic viscosity coefficient 
viscous dissipation 
streamfunction 
vector of dimension N' 
vector of dimension Nk 
vorticity 
vector of dimension N' 
vector of dimension Nf, 
vector of dimension Nf, 
Schmidt's number 
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vT eddy viscosity coefficient 
x von Karman’s constant 
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